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a b s t r a c t 

Accurate and realistic simulation of high-dimensional medical images has become an important research 

area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches 

lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, 

we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI- 

Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration 

in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of 

novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome mem- 

ory limitations affecting such high-dimensional problems, we rely on three key technological advances: 

i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super- 

resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. 

To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 partici- 

pants in the Alzheimer’s Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 

MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time se- 

ries of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying 

the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual 

perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results 

show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that 

outperforms benchmark models. 

Crown Copyright © 2021 Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The increasing availability of big data in healthcare and 

edicine has produced a boom in AI-enabled healthcare tools, par- 

icularly in medical image analysis. However, in various contexts 

f this research area, there is a lack of ground truth data, which 

resents challenges for trust and reliability of the related AI-based 

ools. Therefore, medical image simulation able to generate accu- 
∗ Corresponding author. 

E-mail address: d.ravi@ucl.ac.uk (D. Ravi). 
1 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf 
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ate and realistic data for model validation, can be a vital ingredi- 

nt in the development of these new technologies. Such simulators 

re also important for data augmentation when training AI data- 

ungry models in situations where insufficient samples are avail- 

ble, e.g., in rarer diseases, or to recover missing images in longi- 

udinal studies and predict future disease courses (virtual placebo). 

ere we introduce a novel computationally efficient 4D brain im- 

ge simulation approach and demonstrate its capabilities in a neu- 

oimaging application. 

Neurodegenerative diseases are a major challenge of 21st- 

entury medicine, with the increasing incidence of these age- 

elated diseases expected to continue to rise as the global popu- 

ation ages. This has inspired an explosion in medical data-sharing 

nitiatives including from healthcare records (e.g., Alzheimers Dis- 

ase Data Initiative (ADDI)), and large observational research stud- 

es such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
le under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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euroimaging, such as Magnetic Resonance Imaging (MRI), is able 

o probe neurodegenerative diseases noninvasively and has pro- 

ided well-established biomarkers for tracking disease progres- 

ion in the clinic ( Frisoni et al., 2010 ). The data-sharing revolution 

as inspired the development of a suite of data-driven computa- 

ional modelling methods for understanding and predicting disease 

rogression ( Oxtoby and Alexander, 2017; Golriz Khatami et al., 

020 ), with imaging playing a key role. Despite these effort s, suit- 

ble medical image simulators are relatively few and lagging be- 

ind, because simulating realistic and accurate neuroimaging data 

resents multiple challenges both biologically and computationally, 

any of which we address in this work. 

Here, we introduce 4D-DANI-Net: a computationally-efficient 

ramework for synthesizing a realistic, accurate, and personalized 

ime series of high-resolution brain images for an individual con- 

itioned on disease stage (clinical diagnosis) and age. 

Our contributions can be summarized as follows: i) we de- 

igned a new pipeline that enables the simulation of 4D MRI in 

oth ageing and disease; ii) we proposed a sequence of memory- 

fficient techniques designed to improve training stability, reduce 

mage artefacts, and increase individualization; and iii) we pro- 

osed a new validation protocol based on volumetric comparison 

o assess the accuracy of such a system. 

We demonstrate our framework in the context of Alzheimer’s 

isease and our experiments extensively analyze the capabilities 

f 4D-DANI-Net through quantitative and qualitative assessment, 

fter training on a large dataset consisting of 9652 T1-weighted 

RI from the ADNI and validate on a separate test set of 1216 MRI 

also from the ADNI). 

The paper is structured as follows: in Section 2 , we describe rel- 

vant previous work; in Section 3 , we summarize our new frame- 

ork; in Section 4 , we describe the data set and our training pro-

ocol. Experimental results are presented in Section 5 , and we con- 

lude in Section 6 . 

. Background 

Computational disease progression modelling is a discipline 

hat studies biophysical mechanisms and observable patterns of 

athology spread and symptoms in chronic diseases. Such mod- 

ls are motivated by one or more applications including pre- 

icting the future course and providing insight for disease stag- 

ng, which could help to achieve early diagnosis and personal- 

zed care. For a review of data-driven disease progression models, 

ee Oxtoby and Alexander (2017) . Briefly, the input to many disease 

rogression models ( Fonteijn et al., 2012; Young et al., 2014; Jedy- 

ak et al., 2012; Donohue et al., 2014; Lorenzi et al., 2019; Oxtoby 

t al., 2018; Young et al., 2018 ) is unstructured data such as scalar

iomarkers, including those extracted from MRI for assessing neu- 

odegeneration. Spatiotemporal models, e.g., Lorenzi et al. (2015) , 

urrleman et al. (2013) , attempt to incorporate structural informa- 

ion from the MRI themselves. All these models aim to produce 

uantitative templates of disease progression that promise utility 

or, e.g., recruiting the right patients at the right time into clin- 

cal trials. An MRI simulator has a key role to play in validating 

uch models for these important applications. Other potential clin- 

cal applications include enhancing AI interpretability by providing 

ounterfactual visual examples that help humans identify errors in 

lassifications made by AI systems to understand how marginal de- 

isions come about ( Goyal et al., 2019; Woods et al., 2019; Chang 

t al., 2021 ). Lastly, such simulators can be used to augment med- 

cal imaging datasets by creating new realistic samples required to 

rain data-intensive AI algorithms when data collection is infeasi- 

le or too expensive ( Ravìet al., 2019; Prakosa et al., 2013; Chen 

t al., 2021 ). 
2 
Current MRI simulators can be divided into two categories: 

) biomechanical/physics-based models which describe the brain 

eformations in mechanical terms such as strain, displacement 

nd stress. These models consider geometry, boundary conditions, 

oading, and material properties in their definition ( Miller et al., 

019; Khanal et al., 2017 ); ii) data-driven/learning-based models 

apable of understanding and predicting disease progression. These 

pproaches often use machine learning, including deep learning 

echniques to distil information from big data ( Ravìet al., 2016 ). 

mong these, a type of neural network that is particularly useful 

or generative modelling and simulation is the Generative Adver- 

arial Network (GAN) ( Goodfellow et al., 2014 ), which can generate 

ew samples that plausibly come from an existing distribution of 

eal data. To do this, GANs are trained using two neural network 

odels: a generator that learns to generate new plausible samples, 

nd a discriminator that learns to differentiate generated examples 

rom real examples. However, due to the high spatial dimensional- 

ty (many voxels per scan) and temporal sparsity of MRI data (few 

ime-points per individual), training such type of networks is chal- 

enging and computationally expensive. 

In particular, current MRI simulators suffer three key limitations 

hat severely limit their utility: i) lack of individualization; ii) poor 

mage resolution; iii) limited to 2D images. 

Lack of individualisation precludes accurate modelling of indi- 

idual trajectories because all the simulated MRI scans have the 

ame, group-level deformation pattern. Approaches with this limi- 

ation usually create a spatiotemporal model that learns only one 

onotonic behaviour across all subjects ( Huizinga et al., 2018; 

avis et al., 2010; Dalca et al., 2019; Zhang et al., 2016 ) or a few

orphological templates associated to specific sub-groups ( Camara 

t al., 2006; Karaçali and Davatzikos, 2006; Sharma et al., 2010; 

odat et al., 2014 ). An early attempt to overcome these restrictions 

xploited the power of deep generative models to propose a frame- 

ork based on GANs which uses image arithmetic to combine at- 

ophy patterns and manipulate MRI directly ( Bowles et al., 2018 ). 

owever, this approach was restricted to linear (short-term) dis- 

ase progression and was still based on learning group-level mor- 

hological changes that lose subject individuality over time. 

While solutions lacking individualisation do not com- 

letely fit the purpose of disease progression mod- 

lling, Vaden et al. (2020) have shown that sharing synthetic 

mages reproducing group-level statistics is an alternative solution 

hen it is not possible to share patient data due to privacy or 

ata protection issues. 

The second and third limitations (poor image resolution and 

imited to 2D images) are mainly due to the computational cost re- 

uired by a simulator. In fact, implementing effective methods for 

D, high-resolution brain images, often requires increased compu- 

ational time due to memory issues ( Blumberg et al., 2018 ). 

One approach that suffers from these limitations is pro- 

osed in Khanal et al. (2017) which combines a biophysical 

odel and a deformation field obtained by non-rigid registra- 

ion of two real images. This approach is constrained by mem- 

ry restrictions that result in a trade-off between image resolu- 

ion/dimensionality (e.g., 3D vs 2D), computation time and, ulti- 

ately precludes the utility of such an approach from scaling up 

o large, high-resolution datasets. Beyond the prohibitive compu- 

ational cost, Khanal et al. (2017) also relies on an atrophy lookup 

able rather than learning atrophy patterns from the data. 

Reducing the dimensionality from 3D to 2D MRI can ameliorate 

ome of the computational limitations. For example, the simulator 

n Pathan and Hong (2018) proposed a predictive regression model 

or only 2D images. Instead of directly predicting images, this 

odel predicts a vector momentum sequence ( Singh et al., 2013 ) 

ssociated with a baseline image where a Long Term-Short Mem- 

ry (LSTM) network is used to encode the time-varying changes 
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Fig. 1. This figure shows in a 3-plane orientation, the longitudinal MRI synthesized using our approach for a CN subject at the age of 69.2. The blue box is the input MRI, 

all the other are our synthesized MRI scans. Two magnified regions are reported at the bottom of the figure. . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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n the vector-momentum sequence, and a Convolutional Neural 

etwork (CNN) is used to encode the baseline image of the vec- 

or momenta. Xia et al. (2019a,b) instead proposed a GAN-based 

dversarial training, which aimed to learn an age-based progres- 

ion model for 2D slices of brain MRI scans. Our own prelimi- 

ary work introduced a GAN-based framework, still only for 2D 

RI ( Ravi et al., 2019 ), which was inspired by a face-ageing 

odel ( Zhang et al., 2017 ). 

Here, we introduce a framework to address all these limitations. 

e decompose the 4D problem (3D plus time) into learning multi- 

le separate (2D plus time) models based on the slice-wise frame- 

ork presented in Ravi et al. (2019) . These separate models are 

nified using a new 3D training consistency strategy called Profile 

eight Functions (PWFs) that preserves spatiotemporal continuity 

etween 2D models. This memory-efficient strategy allows us to 

vercome limitation iii) – restricted to 2D images, whereas a 3D 

uper-resolution block is used to overcome limitation ii) – poor im- 

ge resolution. Lastly, we use a transfer learning strategy to obtain 

odel individualisation to overcome limitation i) – lack of individ- 

alization. 

. Methods 

4D-DANI-Net is a deep learning framework for synthesising 

igh-resolution, longitudinal, subject-specific MRI scans. The core 

f the framework is a progression model based on adversar- 

al training which includes biologically-informed spatiotemporal 

onstraints to model neurodegeneration in ageing and dementia. 

ormally, 4D-DANI-Net generates the MRI sequence Y p,i with i ∈ 

 1 . . . A } representing the simulated series of A time points for the 

ubject p, initialised from a single input MRI X p,θ acquired at age 

∈ R 

+ . 
Our framework consists of three main blocks depicted in 

ig. 2 : i) pre-processing; ii) progression model; and iii) 3D super- 

esolution. Pre-processing removes irrelevant variations in the data. 
3 
rogression modelling is performed slice-wise (2D plus time) with 

D training consistency, as a set of DANI-Net models DN n , where 

 ∈ { 1 . . . T } represent different slice positions. Finally, our super- 

esolution block is a function that maps the resulting set of T 

ower-resolution image slices I p,i,n ∈ R 

2 for subject p and time 

oint i obtained from each DN n , to the high-resolution MRI Y p,i ∈ 

 

3 . Below, we describe each block in detail. 

.1. Pre-processing 

We use four pre-processing steps to prepare each input MRI 

 p,θ for model training. This produces a set of n normalized slices 

 p,θ ,n from each MRI. Samples with pre-processing failures were 

xcluded from our experiments. 

The four steps are i) linear co-registration to 1mm isotropic 

NI template using FLIRT-FSL ( Jenkinson et al., 2002 ); ii) skull- 

tripping using BET-FSL ( Jenkinson et al., 2005 ); iii) extraction of 

he n ∈ { 1 . . . T } axial slices from X p,θ ; and iv) performing slice-

ise intensity standardisation (zero mean, unit standard devia- 

ion). In combination, these steps reduce irrelevant variations in 

he data. Such variations can be caused by, e.g., scanner peculiar- 

ties and image orientation, which are irrelevant to the biological 

rocesses of interest. 

.2. Progression model 

For each axial slice in MNI space, we fit an independent 2D 

lus time progression model DN n (based on the original DANI- 

et Ravi et al., 2019 ). Each DANI-Net model consists of three differ- 

nt sub-blocks (see Fig. 3 ): a Conditional Deep Autoencoder (CDA) 

coloured in pink); a set of adversarial networks (yellow); and a 

et of biological constraints (grey). We also introduce a novel PWFs 

trategy for unifying slice models into a 3D progression model dur- 

ng training (blue). 
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Fig. 2. The full 4D-DANI-Net pipeline consisting of three main blocks, each depicted in grey: i) a pre-processing block, ii) a progression model consisting of a set of separate 

2D DANI-Net modules trained with the proposed 3D consistency strategy called PWFs and iii) a 3D super-resolution block. The dashed blue boxes represent intermediate 

outputs of each block. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2.1. Conditional deep autoencoder (CDA) 

This block aims to learn a mapping between an initial manifold 

representing brain MRI) and a lower-dimensional space, which we 

efer to as the latent space. This latent space is conditioned on 

ther factors associated with the subject (i.e., current diagnosis, 

ge) to allow manipulation of the image prediction on the origi- 

al manifold according to these metadata. 

More specifically, this block is composed of two deep neural 

etworks: an encoder E that embeds X p,θ ,n in a latent space Z, and 

 generator G that projects samples in the latent space, back to 

he original manifold. The latent vector z is conditioned on two 

ariables: d ∈ N 

+ — a numerical representation [ 0 − 3 ] of diagnosis 

cognitively normal CN, subjective memory concern SMC, early/late 

ild cognitive impairment E/LMCI, Alzheimer’s disease AD); and 

 ∈ N 

+ — an age index binned into A groups. This age binning al- 

ows learning of morphological changes between age groups and 

revents the CDA from memorizing (in the latent space) the age θ
s an individual representation for each sample and thereby over- 

tting to age. 

The CDA is trained using a reconstruction loss L rec 
p,n that min- 

mizes the difference between the input X p,θ ,n at age θ and the 

utput sequence G p,i,n = G (E(X p,θ ,n ) , i, d) with i ∈ { 1 . . . A } . This dif-

erence is weighted using a fuzzy Gaussian membership function 

i [ m i , σi ] centred on the average age m i of each age bin, with

idth σi ∝ 

√ 

δi proportional to the maximum age difference δi in- 
4 
ide each bin. This preserves similarity between the input and the 

enerated sequence, weighting nearer ages more heavily. Formally, 

 

rec 
p,n is described as follows: 

 

rec 
p,n = 

A ∑ 

i =1 

L 2 
(
X p,θ ,n , G p,i,n μi [ m i , δi ] 

)
. (1) 

.2.2. Adversarial training 

GANs are a class of adversarial deep neural networks that have 

een successfully used to generate high-quality images across a 

ide range of tasks. 

We introduce a new adversarial training technique for the 4D- 

ANI-Net. In our case, the generator network G (the decoder of our 

DA) learns how to create synthetic realistic brain images. Simul- 

aneously, we use two discriminators, D 

z and D 

b , trained adversar- 

ally with the encoder E and the decoder G of our CDA. 

More specifically, G is trained to fool D 

b , i.e., to generate brain 

RI with a similar distribution to the initial true distribution. Si- 

ultaneously D 

b is trained to discriminate between empirical and 

ynthetic brain MRI (generated by G ). To train D 

b we use the fol-

owing loss function: 

in 

G 
max 

D b 
E p 

[
log D 

b 
(
X p,θ ,n ) 

)]
+ E p 

[
1 − log D 

b 
(
G (E(X p,θ ,n ) , a, d) 

)]
, 

(2) 
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Fig. 3. Single slice DANI-Net module used inside the propose framework 4D-DANI-Net. Each component of this module is identified by a different colour. 
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b

here E is the expectation, D 

b estimates the probability that a slice 

ontains a realistic brain and E(X p,θ ,n ) is the latent vector obtained 

rom X p,θ ,n . 

The second discriminator D 

z is trained adversarially with the 

ncoder E, to produce z with a uniform prior U and smooth tem- 

oral progression. To train D 

z we use the following loss function: 

in 

E 
max 

D z 
E z ∗

[
log D 

z (z ∗) 
]

+ E p 

[
1 − log D 

z (E(X p,θ ,n )) 
]
, (3) 

here z ∗ is a vector sampled from U and D 

z estimates the proba- 

ility that a vector comes from U . 

.2.3. Biological constraints 

To capture the patterns of image intensity changes that ac- 

ompany disease progression across time, 4D-DANI-Net uses two 

eparate loss functions at different spatial scales: voxel-level L vox 

nd region-level L reg . These losses impose biological constraints 

hat mimic neurodegeneration by ensuring monotonically decreas- 

ng intensity (brain tissue density Vemuri et al., 2010 ) that is con- 

istent with normal ageing and/or dementia. 

For the synthetic output G p,a,n with a equal to the bin index for 

ge θ , the voxel-level loss function L vox 
p,n penalizes non-monotonic 

rogression by imposing that all the voxels in G p,i,n with i < a have

qual or higher intensity, and that all the voxels in G p, j,n with j >

 , have equal or lower intensity (recall that intensity is normalized 

n the first block of Fig. 2 ). 

L vox 
p,n is defined as follows: 

 

vox 
p,n = 

1 
2 

[
L 2 (G p,a,n , min (G p, 1 ,n , . . . , G p,a −1 ,n ))+ 

 2 (G p,a,n , max (G p,a +1 ,n , . . . , G p,A,n )) 
] (4) 

L vox 
p,n models progression at the voxel level, but is incapable to 

odel intensity changes that can occur at the global level (i.e., due 

o tissue deformation). 

Therefore, we introduce a region-level loss function L 
reg 
p,n that 

odels slice-wise regional neurodegeneration through a set of pre- 
5 
rained logistic regressors (LRs). Each regressor LR n,q is trained to 

redict intensity progression in fixed, overlapping region masks q . 

e describe how to generate these specific regions in Section 3.5 . 

For slice n , the regressor takes three input features: age at base- 

ine, age at follow-up, and diagnosis. We restrict each LR to train 

onotonically decreasing data by removing time-points where re- 

ional intensity increases (representing outliers). We also weigh 

he errors made by each LR n,q with the corresponding region size 

 n,q , to induce consistent intensity within large regions. The contri- 

ution of s n,q helps to make this loss resistant to the noise in the 

RI. 

Formally, L reg p,n is defined as follows: 

 

reg 
p,n = 

1 
R n (A −1) 

·
R n ∑ 

q =1 

[ 

a −1 ∑ 

o=1 

(
LR n,q (o, a, d) −

∑ ∗[ G p,a,n � r n,q ] + ε∑ ∗[ G p,o,n � r n,q ] + ε

)√ 

( s n,q ) 

+ 

A ∑ 

o= a +1 

(
LR n,q (a, o, d) −

∑ ∗[ G p,o,n � r n,q ] + ε∑ ∗[ G p,a,n � r n,q ] + ε

)√ 

( s n,q ) 

] 

, 

(5) 

here R n is the number of regions; r n,q are the region masks; 

R n,q (o, a, d) is the corresponding intensity change predicted from 

he logistic regressor for age a , conditioned on diagnosis d, starting 

rom the baseline age o; ε = 0 . 1 avoids numerical errors; � is the 

atrix Hadamard product (element-wise multiplication); and 

∑ ∗

s the sums over brain voxels. 

.2.4. Total loss 

Each single-slice DANI-Net model DN n is computed on the 

lice position n and is trained to optimize all the losses 

 L 
reg 
p,n , L 

vox 
p,n , L D 

b 

n , L D 
z 

n , L 
rec 
p,n ) at the same time. We illustrate this in the

lack block of Fig. 3 . 
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Fig. 4. Left: Training separated slice-based models using a complicated framework with multiple adversarial losses (i.e. 4D-DANI-Net) and each loss having a constant 

relevance along the entire training process, can lead to possible local minima. Right: Proposed PWFs strategy; the relevance of each loss during training is specified by 

profile functions with parameters learned via grid search. In this case, the training follows a specific path in the manifold and avoids local minima. 
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The total loss is the weighted sum 

 

tot 
n = w 

reg ·
∑ 

p 

L 
reg 
p,n + w 

vox ·
∑ 

p 

L vox 
p,n + w 

b · L D 
b 

n 

+ w 

z · L D 
z 

n + w 

rec ·
∑ 

p 

L rec 
p,n (6) 

here L D 
z 

n = E z ∗
[

log D 

z (z ∗) 
]

+ E p 

[
1 − log D 

z (E(X p,θ ,n )) 
]

and

 

D b 
n = E p 

[
log D 

b 
(
X p,θ ,n ) 

)]
+ E p 

[
1 − logD 

b 
(
G (E(X p,θ ,n ) , a, d) 

)]
are

he cross entropies obtained respectively by the discriminators D 

z 

nd D 

b , for the slice position n over all subjects p. 

The weights allow for framework customization, such as: 

– increasing w 

reg increases the contribution of disease progres- 

sion (the LRs); 

– increasing w 

vox regularizes voxel intensity changes for flat 

regions, but may increase rigidity of brain structures; 

– increasing w 

b increases model generalization at the cost to 

decrease favours qualitatively realistic brain images; 

– increasing w 

z reduces temporal smoothing to allow rapid pro- 

gression, which can introduce temporal discontinuity; 

– increasing w 

rec increases similarity across age, which dimin- 

ishes progression learned by the LRs. 

Some loss functions optimize concurrent tasks, so finding the 

ptimal configuration for these weights is nontrivial. Our strategy 

o accomplish this is via PWFs, that we describe in the next sec- 

ion. 

.2.5. Profiling weight functions (PWFs) for 3D training consistency 

In this section, we introduce PWFs that propose a way to dy- 

amically weigh our five losses and unifying the training of the 2D 

lice-wise models ( Ravi et al., 2019 ) in a computationally efficient 

anner. 

Due to the complexity and non-convexity of our total loss func- 

ion, training each DN n might be unstable. This is particularly prob- 

ematic since convergence failures in a slice will generate spa- 

ial inconsistency artefacts in the synthetic 3D MRI. This is com- 

ounded by the adversarial components of DANI-Net ( D 

z and D 

b ), 

s GANs are known to be prone to training instability ( Gulrajani 

t al., 2017; Heusel et al., 2017 ). 
6 
The left block of Fig. 4 shows a hypothetical example that 

ould create problems with classical adversarial training, as the 

ompetitor networks may reach a local minimum of the training 

anifold. 

To overcome this type of instability, the PWFs will guide train- 

ng. It is inspired by a multistage learning strategy where hu- 

ans solve a complex visual problem, i.e., optimizing simpler sub- 

asks first. Explicitly, PWFs guide the system to focus on fewer 

oss functions at a time, i.e., providing greater regularization. This 

s achieved by dynamically weighting each component loss dur- 

ng every training epoch t . To do so, we use the following mean- 

everting exponential function: 

f (t) = � 

t · b loss + (1 − � 

t ) · b loss v 
u (7) 

ith parameters ( b loss , v and u ) optimized by a random search

trategy on a grid, and measuring training convergence using the 

 

tot 
n on a validation set. The right side of Fig. 4 depicts how PWFs 

elp to avoid local minima and, in our case, ensure that different 

odels avoid the spatial mismatch that can cause image artefacts. 

The final step for maintaining 3D consistency between con- 

ecutive slices is to smooth slice-wise models using a Gaussian- 

eighted ( σ = 1 . 5 ) average, that includes the ±2 nearest- 

eighbour slices. 

The workflow of the proposed progression model block is de- 

cribed schematically in Fig. 2 . 

.3. 3D Super-resolution 

To recover lost anatomical detail due to the Gaussian smooth- 

ng (described in the preceding section), we include a 3D super- 

esolution block at the end of our pipeline (see Fig. 2 ). This is

ased on a modified 3D densely-connected super-resolution net- 

ork ( Chen et al., 2018 ) that uses pairs of low-resolution (LR) and

igh-resolution (HR) MRI for training a deep super-resolution neu- 

al network. 

We train this super-resolution block separately from the rest of 

ur framework. To do so, we use as HR images the X p,θ ,n available 

n the training set, and as LR counterparts, the output obtained 

rom the same input X p,θ ,n , at the same age θ computed from our 

ramework when the super-resolution block is disabled. 
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Table 1 

Table summarizing the parameters used in the grid search and the corresponding 

best values obtained during the optimization. 

Shape Parameters Average Loss 

Value 

Parameter Best Value Search Range Grid Step 

b reg 1.25 [1–2] 0.25 0.26 

b vox 1.25 [1–2] 0.25 0.24 

b b 0.002 [0.001-0.004] 0.001 72.27 

b z 0.05 [0.05 0.1] 0.01 12.34 

b rec 100 [75 175] 25 0.003 

Direction Parameters 

Parameter Best Value Search Range Grid Step 

d reg 1 [-1 1] 2 

d v ox 1 [-1 1] 2 

d b 1 [-1 1] 2 

d z 1 [-1 1] 2 

d rec -1 [-1 1] 2 
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Once these pairs of LR/HR are created, we use them to train 

he super-resolution network. We then proceed by attaching this 

rained SR-network onto the backbone of our trained system. This 

llows us to super-resolve the stacked output I p,i,n (generated by 

ach DN n ) and to produce the required high-resolution MRI Y p,i . 

.4. Post-processing using transfer learning 

At the inference stage, we use transfer learning to personalise 

nd fine-tune the model on each test input brain. The aim of this 

rocedure is to synthesize image evolution that reflects individual 

haracteristics (here represented by brain morphology) and align 

ach test MRI-slice to the model by age and diagnosis. 

For each DN n and for each test subject p, we perform fine- 

uning with an additional 50 training iterations on each single test 

nput image, where only the MRI from each test subject’s first visit 

s used. Here, only the parameters in the super-resolved block are 

rozen whilst all the other network parameters are fine-tuned to 

he specific morphology of the test individual’s brain. The number 

f iterations required in the transfer learning step was determined 

mpirically by visual inspection on the obtained images. 

.5. Additional information: region extraction based on atlas 

The region masks used to train 4D-DANI-Net are pre-defined 

y the brain atlas proposed in Varentsova et al. (2014) and im- 

osed on each MRI using linear registration. The regions are ex- 

racted from the axial slices of this atlas. Additionally, to increase 

ubject-specific variability, each region is augmented by applying 

orphological operators of erosion and dilatation. After this pro- 

ess, for each slice position, an average of 88 regions are generated, 

nd a total of 9113 regions are extracted on the entire MRI (aver- 

ge size of a region is 517 voxels). As explained in Section 3.2.3 ,

hese regions represent each r n,q and are used to train the logistic 

egressors LR n,q required to embed the regional ratio of intensity 

hanges in the system. 

. Dataset and training details 

Data used in the preparation of this article were obtained from 

he ADNI database (adni.loni.usc.edu). The ADNI was launched in 

003 as a public-private partnership, led by Principal Investigator 

ichael W. Weiner, MD. The primary goal of ADNI has been to test 

hether serial Magnetic Resonance Imaging (MRI), Positron Emis- 

ion Tomography (PET), other biological markers, and clinical and 

europsychological assessment can be combined to measure the 

rogression of Mild Cognitive Impairment (MCI) and early AD. 

In our experiments, we selected 12,386 pre-processed T1- 

eighted MRI scans from N = 1216 participants in the ADNI 

ataset. The scans were obtained using different scanners and at 

ultiple sites. Participants were aged between 63 and 87 years old, 

nd 28% were CN, 4% have been diagnosed with subjective mem- 

ry concern, 54% with mild cognitive impairment and 14% with AD. 

ach participant has on average 4.7 MRI spanning 3 years. We di- 

ided our dataset in train-set (MRI: 9852; participants: 876), vali- 

ation set (MRI: 1251; participants: 170), and test-set (MRI: 1283; 

articipants: 170). In the test-set, we make sure that participants 

ave at least one follow-up visit two years after baseline, to allow 

ufficient time for observable neurodegeneration to occur or to be 

xcluded. 

The first step of our training procedure uses the random grid 

earch on the validation set to find the optimal parameters for our 

WFs. The full PWFs and related parameters obtained from this 

rocedure are reported below. 

w 

reg (t) = � 

t · b reg + (1 − � 

t ) · b reg · v d reg 

 

vox (t) = � 

t · b vox + (1 − � 

t ) · b vox · v d v ox 
7 
w 

b (t) = � 

t · b b + (1 − � 

t ) · b b · v d b 

w 

z (t) = � 

t · b z + (1 − � 

t ) · b z · v d z 

w 

rec (t) = � 

t · b rec + (1 − � 

t ) · b rec · v d rec 

where t is training epoch, � = 0 . 99 determines how fast the pro- 

le functions converge, v = 10 controls initial and final conditions 

f the weight functions, b reg , b vox , b b , b z , b rec are the proposed

arameters describing the “shape” of the slope of each function 

nd d reg , d v ox , d b , d z , d rec describe the “direction” of the slope (as-

ending or descending). The range of values used in the grid search 

s chosen so that the product between each weight and the average 

alue of the corresponding loss is normalized in the range [0–1]. 

he best values obtained during the grid search, together with the 

verage values of each loss (which come from one training run of 

ur system with the PWF block disabled) are reported in Table 1 . 

The exponent values obtained for each PWF describe the op- 

imization strategy used to train our system. Respectively, a neg- 

tive/positive exponent tells the optimizer to focus on the corre- 

ponding loss earlier/later in the training process. 

Our interpretation of the obtained values suggests that the 

raining should first focus on L rec 
p,n (reconstruction loss) to learn 

 simple progression model based on conditional morphological 

eformations. As w 

rec decays, the other weights increase towards 

heir asymptotes, with our parameter search results meaning that 

 

vox and w 

reg dominate over w 

z and w 

b . In practical terms, 

his means that our PWFs favour optimization of losses associated 

ith biological considerations (voxel-wise and region-wise neu- 

odegeneration) over and above temporal smoothing ( w 

z ) and im- 

ge realism ( w 

b ). The converse (favouring spatiotemporal similar- 

ty over progression modelling) can result in overfitting to individ- 

al morphology, and poor generalization performance of the model 

hen applied to new individuals. This is because, generated im- 

ges might be quite different from the training samples and, in 

his case, the discriminator D 

b would recognize them as unreal- 

stic although they could potentially be real. This behaviour can 

rive the generator G to avoid creating these brain structures al- 

hough they are reasonable, which amounts to overfitting of indi- 

idual morphology. 

Although traditional initialization techniques can be used 

ithin our pipeline (i.e. Xavier), we found better performance 

hen all the models start from a common initialization (red cloud 

n Fig. 4 ). In practice, this common initialization consists of a 

odel pre-trained with only 100 iterations on central axial slices 

f the training images. 
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Once the PWFs are defined, we proceed by training our T = 95 

N n models, each associated with one of the different slices n . The 

umber of time points A for the age is fixed to 10. Output MRI 

aving an intermediate age value within these fixed points are ob- 

ained by a weighted linear interpolation of the two closest MRI. 

The architectures of each network E, G , D 

b , D 

Z are based on

he implementation proposed in Zhang et al. (2017) . The size of 

he latent space Z is fixed to 200. Each DN n is trained using the

ame PWFs and the same training configuration that is based on 

he stochastic gradient descent solver, ADAM ( α = 0.0 0 02, β1 = 

.5). We stop the training procedure after 300 epochs where each 

teration uses a random mini-batch with 100 slices having the size 

f 128 × 128 pixels. 

. Experiments and results 

In our experiments, we first compare the proposed solu- 

ion against state-of-the-art approaches using real follow-up as a 

round truth. More specifically, we perform a qualitative assess- 

ent ( Section 5.1 ) based on the evaluation of image realism and 

rtefacts, complemented with quantitative analyses ( Section 5.2 ) 

hat measure the ability to generate MRI having accurate volumet- 

ic biomarkers. We then perform an ablation study ( Section 5.3 ) in- 

olving different configurations of 4D-DANI-Net to assess the con- 

ributions of each component block. Qualitative and quantitative 

ssessments for the ablation study are presented respectively in 

ection 5.3.1 and Section 5.3.2 . We also evaluate the visual qual- 

ty of our synthetic images via an evaluation survey ( Section 5.4 ) 

iven to expert image readers, i.e., radiologists and neurologists. 

inally, we present the computation time required for training and 

unning our simulator in Section 5.5 , and an experiment on model 

eneralization using a new cohort in Section 5.6 . 

.1. Qualitative comparison study 

Here we compare our framework to the two state-of-the-art so- 

utions available for MRI synthesis: i) the baseline DANI-Net ob- 

ained by independent training (and stacking) of 2D slice mod- 

ls ( Ravi et al., 2019 ); and ii) the biomechanical approach proposed 

n Khanal et al. (2017) , which required down-sampling of the MRI 

esolution (by a factor of 2) for computationally feasible training 

imes, followed by re-scaling to the original resolution using bilin- 

ar interpolation. 

Figure 5 shows that our approach provides the best results: 

ewer artefacts and superior resolution (less smoothing). Notably, 

mages generated by Khanal et al. (2017) show excessive smooth- 

ng, whereas images generated by Ravi et al. (2019) contain notable 

rtefacts. 

.2. Quantitative comparison study 

Here we quantify the ability of the proposed 4D-DANI-Net to 

ynthesize MRI that produce accurate regional volumes in the 

rain, as percentages of total brain volume (a standard approach 

o controlling for person-to-person variability in head size). Accu- 

acy is presented as the mean and standard deviation in absolute 

rror between synthetic and real images, across all 170 test cases. 

his is achieved by applying brain segmentation in both simulated 

nd synthetic MRI scans and computing volumes using the FSL li- 

rary ( Smith et al., 2004 ) for regions of interest relevant to age-

ng and Alzheimer’s disease: left hippocampus, right hippocampus, 

eripheral grey matter, ventricular cerebrospinal fluid (CSF), total 

rey matter, and total white matter. Error for test subject p in brain 

egion x is formulated as: 

rr px = 

∣∣∣ F SL (Y p ,x ) 

F SL (Y p ,tb) 
− F SL (Y ∗p ,x ) 

F SL (Y ∗p ,tb) 

∣∣∣ ∗ 100 (8) 
8 
here Y ∗p is the real follow-up (ground truth), Y p is the simulated 

RI, F SL (Y p , x ) is the estimated regional volume on Y p for the re-

ion x obtained by the FSL library, and F SL (Y p , tb) is the corre-

ponding total brain volume. 

Table 2 contains the results of quantitative comparison of 

ur full model against other methods: DANI-Net ( Ravi et al., 

019 ), and a few other regression-based methods that have 

een used as benchmarks for predicting biomarker trajectories 

 Marinescu et al., 2020 ). Specifically, we consider a naive support 

ector regressor (SVR), a linear mixed-effects (LME) model, and 

wo optimized regressor models, SVR 

∗ and LME ∗, where 20% of 

utliers were removed. Note that the regression-based models are 

rained directly on extracted brain volumes, with gender and di- 

gnosis as covariates. These regressor approaches are incapable of 

enerating simulated images. 

For the LME model, we group the training set in four different 

roups based on diagnosis while the age and gender are consid- 

red both as random and fixed effects. For the SVR model, we used 

he RBF kernel with the hyper-parameters C = 10 and coef0 = 0; and 

ge, gender and diagnosis as predictive features. 

Apart from tweaking the baseline DANI-Net ( Ravi et al., 2019 ) 

o that we could stack the different slices together and ob- 

ain the simulation on 3D MRI, we are unable to perform fair 

omparisons (same image resolutions) against other simulators 

i.e. Khanal et al., 2017 ) due to the limitations presented in the 

ntroduction. 

Table 2 shows that the worst-performing method is the original 

ANI-Net ( Ravi et al., 2019 ), which is not surprising because it was

ot designed for 3D MRI. 

The best performing method varies with brain region size. For 

arge regions, 4D-DANI-Net (proposed approach) has the highest 

ccuracy by a considerable margin: average reduction in error is 

33 . 2% against SVR 

∗ and −33 . 0% against LME ∗. For small regions,

he SVR 

∗ and LME ∗ slightly outperform 4D-DANI-Net. From this, 

e surmise that simple models are adequate for small regions, but 

re less capable to capture the complexity of neurodegeneration in 

arger regions. 

In summary, from the comparison study, we can see that 

D-DANI-Net produces state-of-the-art performance for modelling 

eurodegeneration in ageing and Alzheimer’s disease progression. 

.3. Ablation study 

In this section, we analyse the contribution of each component 

f our framework. 

The configurations of 4D-DANI-Net considered in our ablation 

tudies involve the basic model (denoted by L ∗) obtained by inde- 

endent training (then stacking together) of MRI slices, plus com- 

inations of the 3D training consistency strategy (denoted by TC 

nd obtained when PWFs are used), the super-resolution block (de- 

oted by SR), and the transfer learning block (denoted by TL). See 

ection 3 for details of each. 

.3.1. Qualitative ablation study 

Our qualitative ablation study compared artefacts in synthetic 

mages obtained by different configurations of 4D-DANI-Net for 

hree representative test cases. 

Figure 6 shows that the full configuration L ∗_TC_SR_TL produces 

isually superior synthetic MRI, i.e., fewer artefacts in compari- 

on to synthetic MRI obtained by other configurations. In the ap- 

roaches lacking 3D consistency constraints (L ∗_TL), the indepen- 

ent training of 2D slice-wise models leads to notable artefacts 

ppearing in sagittal and coronal axes when networks do not con- 

erge (yellow boxes in Fig. 6 ). As intended, such issues are al- 

ost eliminated through the use of our 3D training consistency 

trategy TC (L ∗_TC_TL and L ∗_TC_SR_TL configurations). When TC 
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Fig. 5. Qualitative comparison study: Synthetic MRI, generated starting from the baseline scan, for three representative test cases (rows) across different MRI simulator 

models (columns). 

Table 2 

Quantitative comparison study: Mean absolute error ( ± standard deviation) in predicted regional volumes of the brain, expressed as a percentage of total 

brain volume. 

Framework 

Small regions Large regions 

Left Hippocampus Right Hippocampus Peripheral Grey Matter Ventricular CSF Tot. Grey Matter Tot. White Matter 

( Ravi et al., 2019 ) 0.062 ± 0.052 0.064 ± 0.049 3.997 ± 1.805 1.197 ± 0.755 1.845 ± 1.379 1.845 ± 1.379 

SVR 0.029 ± 0.020 0.032 ± 0.021 1.432 ± 1.065 0.688 ± 0.534 1.553 ± 1.244 1.557 ± 1.249 

SVR ∗ 0.028 ±0.019 0.032 ± 0.020 1.406 ± 1.041 0.675 ± 0.538 1.539 ± 1.198 1.557 ± 1.201 

LME 35.342 ± 18.198 3.599 ± 2.595 1.452 ± 0.999 0.584 ± 0.420 1.524 ± 1.053 1.522 ± 1.068 

LME ∗ 0.032 ± 0.024 0.030 ±0.018 1.461 ± 1.009 0.555 ± 0.415 1.527 ± 1.059 1.526 ± 1.061 

Proposed 0.029 ± 0.028 0.031 ± 0.031 0.771 ±0.499 0.257 ±0.222 0.829 ±0.612 0.829 ±0.612 
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s used without SR, anatomical details are often not visible (red 

oxes in Fig. 6 ) and the images appear overly smooth. Conversely, 

hen SR is used without TC, the super-resolution of artefacts in- 

roduces false structures (green boxes in Fig. 6 ). Disabling the 

ransfer learning procedure TL (configuration L ∗_TC_SR) produces 

naccurate morphology, i.e., excessive ventricles expansion, caused 

y lack of individualization (blue boxes in Fig. 6 ). 

For completeness, Fig. 1 shows an example of an entire sim- 

lation obtained using the full configuration of 4D-DANI-Net. Ex- 
9 
ected neurodegeneration is apparent in the sequence, including 

entricular expansion, hippocampus contraction, and cortical thin- 

ing. 

.3.2. Quantitative ablation study 

Table 3 contains the results of our quantitative ablation study, 

hich shows that the full model (L ∗_TC_SR_TL) produces the low- 

st absolute error in brain volume. Our 3D training consistency 

trategy TC reduces errors considerably: when TC is added to 
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Fig. 6. Qualitative ablation study: Synthetic MRI, generated starting from the baseline scan, for three representative test cases (rows) across different model configurations 

(columns) involving combinations of training consistency (TC), super-resolution (SR) and transfer learning (TL) blocks on top of the basic model L ∗ . Coloured boxes show: 

spatial discontinuity artefacts (yellow boxes) generated by unstable training; missing anatomical detail (red boxes) when super-resolution is not included; artefacts caused by 

super-resolution in the presence of spatial discontinuity artefacts (green boxes); and inaccurate morphology (blue boxes) in the ventricles when individualization is omitted 

from the model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Quantitative ablation study: Mean absolute error ( ± standard deviation) in predicted regional volumes of the brain, expressed as a percentage of total brain 

volume. 

Proposed framework Small regions Large regions 

configuration Left Hippocampus Right Hippocampus Peripheral Grey Matter Ventricular CSF Tot. Grey Matter Tot. White Matter 

L ∗_TL 0.060 ± 0.049 0.063 ± 0.058 3.661 ± 1.751 1.284 ± 0.794 1.784 ± 1.213 1.784 ± 1.213 

L ∗_TC_TL 0.060 ± 0.051 0.060 ± 0.046 2.396 ± 1.552 1.236 ± 0.788 1.761 ± 1.206 1.761 ± 1.206 

L ∗_SR_TL 0.029 ±0.028 0.031 ±0.031 0.806 ± 0.539 0.250 ±0.208 0.921 ± 0.685 0.921 ± 0.685 

L ∗_TC_SR 0.033 ± 0.027 0.033 ± 0.028 2.478 ± 1.270 0.347 ± 0.275 2.860 ± 1.427 2.860 ± 1.427 

L ∗_TC_SR_TL 0.029 ±0.028 0.031 ±0.031 0.771 ±0.499 0.257 ± 0.222 0.829 ±0.612 0.829 ±0.612 
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∗_TL, errors are reduced by an average (mean) of 7.6%; when TC is 

dded to the L ∗_SR_TL configuration, errors are reduced by an av- 

rage of 3.5%. Our super-resolution strategy SR improves accuracy 

ignificantly. In fact, SR was the largest contributor to accuracy by 

 considerable margin — reducing errors by an average of 53.9% 

hen used with TL, and by 58.8% when used with TL and TC. How- 

ver, this last result also shows that super-resolution alone is not 

ufficient to maximize accuracy. 

It is noteworthy that the absolute errors in gm and wm are 

dentical, but they are in fact opposite in sign (not shown). This 

ndicates that the source of volumetric errors is concentrated 

round the grey matter/white matter boundary, which is prob- 

bly due to the well-known phenomenon of partial volume ef- 

ects ( Weibull et al., 2008 ). 

By looking at the results of the baseline ( Ravi et al., 2019 ) in

able 2 , we note that any configuration of 4D-DANI-Net outper- 

orms ( Ravi et al., 2019 ). Even the simplest configuration L ∗_TL re-

uces errors by an average of 2 . 8% . This is as expected since the

aseline DANI-Net ( Ravi et al., 2019 ) is similar to the simplest con-
10 
guration of 4D-DANI-Net (L ∗_TL) except that the latter optimizes 

ome of the loss functions, therefore providing better accuracy. 

Table 4 summarizes the percentage of improvements in term of 

ccuracy (error reduction) obtained when a specific component of 

ur framework is included or excluded from the full configuration. 

uper-resolution provided the largest contribution (58.8%) followed 

y the transfer learning (42.5%) and the proposed training consis- 

ency (3.6%). 

Finally, Table 5 shows the percentage of improvements due 

o each term of our combined loss (L tot ). Temporal smoothing 

 L D 
z 
) provided the largest contribution (+43.5%), closely followed 

y the adversarial loss related to brain realism ( L D 
b 
, +40.7%), then 

econstruction error used to train the deep autoencoder ( L rec , 

30.2%) and disease progression modelling losses ( L reg and L vox , 

21.9%). 

Our ablation studies cumulatively show that each component 

lock and each loss of 4D-DANI-Net improves the performance in 

ynthesizing a long-time sequence of personalised, high-resolution 

edical images with no discernible artefacts. 
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Table 4 

Quantitative ablation study: Percentage of improvements in framework accuracy for each component of our system. 

Considered framework Small regions Large regions Overall 

component Left Hippocampus Right Hippocampus Peripheral Grey Matter Ventricular CSF Tot. Grey Matter Tot. White Matter 

Training Consistency (TC) 0.00% 0.00% + 4.34% -2.80% + 9.98% + 9.98% + 3.58% 

Transfer Learning (TL) + 12.16% + 6.06% + 68.88% + 25.93% + 71.01% + 71.01% + 42.50% 

Super-Resolution (SR) + 51.66% + 48.33% + 67.82% + 79.20% + 52.92% + 52.92% + 58.80 % 

Table 5 

Quantitative ablation study: Percentage of improvements in framework accuracy for each term of our combined loss. 

Considered loss term Small regions Large regions Overall 

Left Hippocampus Right Hippocampus Peripheral Grey Matter Ventricular CSF Tot. Grey Matter Tot. White Matter 

Progression ( L reg and L vox ) + 6.45% 0.00% + 14.71% + 39.09% + 35.73% + 35.73% + 21.95% 

Reconstruction error ( L rec ) + 14.70% + 13.88% + 32.07% + 19.68% + 50.44% + 50.44% + 30.20% 

Realistic brain ( L D 
b 
) -3.57% + 6.06% + 71.66% + 24.63% + 72.62% + 72.62% + 40.67% 

Temporal smoothing ( L D 
z 
) + 12.12% + 8.82% + 71.44% + 25.29% + 71.71% + 71.71% + 43.51% 

Fig. 7. Graphic User Interface used to perform the proposed survey. 
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.4. Radiological assessment of visual perception and disease stage 

Finally, expert image readers evaluated simulated images 

gainst real images in terms of perceived visual artefacts as well 

s diagnostic accuracy. 

To do so, we performed a survey where we recruited 21 par- 

icipants (4 neurologists, 4 neuro-radiologists, 10 neuroimaging ex- 

erts and 3 medical imaging researchers with an average of 9 years 

xperience), and we asked them to evaluate 22 randomly selected 

ases extracted from the test set. From these cases, 3 out of 22 

ubjects have progressed in a different diagnosis during the follow- 

p scan whereas the remaining 19 subjects have maintained the 

nitial diagnosis. 

We set up an online web application (see Fig. 7 ) that shows, for

ach of the 22 cases, a T1-weighted brain MRI of a patient. Below 

his MRI scan, two more images labelled A and B shown in random 

rder to avoid any selection bias. One of these 2 images is the real

ollow up MRI of the same initial subject; the other is the synthetic 
11 
mage generated starting from the initial MRI and obtained for the 

ame follow-up interval. Each participant is asked to identify the 

imulated image in each of these 22 cases. 

Additionally, during the survey, the participants were asked 

o identify and classify possible visual differences selected from 

 severity scores (minor and major) and 3 different categories 

noise/texture, structural differences and unrealistic artefacts) and 

o assign a clinical diagnosis to both A and B in order to verify 

hat there is no clinical inconsistency between real and synthetic 

mages. The age and diagnosis at the baseline scan and the age at 

he follow-up scan were displayed to help the participants to as- 

ign the correct diagnosis. Finally, for each case and each different 

ask in the survey, the participants were asked to provide a confi- 

ence score selected from the following list: 

• None: ‘I have no idea and am guessing’ 
• Low: ‘I have low confidence’ 
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Fig. 8. Accuracy and confidence scores obtained from the participants of our survey on 3 different tasks: i) discriminating real images vs simulated images (bars in grey), 

ii) assigning diagnosis using simulated images (bars in orange) and iii) assigning diagnosis using real images (bars in blue). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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• Medium: ‘I am reasonably confident’ 
• High: ‘I am absolutely sure’ 

The results of this survey are presented in Fig. 8 where each 

ask is represented with a different colour: i) bars in grey depict 

he results related to the discrimination task (real vs simulated im- 

ges), ii) bars in orange depict the results related to the diagnosis 

sing simulated images and iii) bars in blue depict the results re- 

ated to the diagnosis using real images. 

On the first left graph of Fig. 8 , we can see that participants

an discriminate the real and simulated images with an accu- 

acy of 59.3%. We specifically noticed that neurologists achieved 

he highest accuracy (76.4% ± 2.6%), while neuro-radiologists ob- 

ained 68.0% ± 7.1%, neuroimaging experts 54.6% ± 18.6% and fi- 

ally, medical imaging researchers 45.4% ± 6.4%. 

These results show that even the most highly trained partici- 

ants have some difficulty discriminating between synthetic and 

eal images (best score was 86.4%), and all the participants to- 

ether achieved just 59.3% of accuracy that is slightly worse than 

he ideal case of random choice when the 2 classes are indistin- 

uishable. 

In Fig. 8 we can also see that the diagnosis using synthetic im- 

ges is almost identical to the real follow-up (57.9% vs 56.8%) sup- 

orting the idea that our system is able to capture key aspects of 

isease progression. 

In terms of the confidence scores related to the discrimination 

ask (second left graph in Fig. 8 ), the majority of experts have se-

ect a low or a medium confidence score, confirming once again 

hat the images cannot be easily discriminated. 

For the confidence scores related to the assignment of the di- 

gnosis (last two graphs in Fig. 8 ), these are distributed equally 

etween the none and medium confidence scores and we did not 

nd differences between the results on simulated image and the 

eal ones. 

In Fig. 9 we report visual perception results from the survey of 

xperts. These results show that the majority of the artefacts on 

he simulated images are minor noise/texture artefacts (31.6%) and 

inor morphological structural differences (29.3%). Only 2.6% were 

inor unrealistic artefacts, 2.6% major texture artefacts, 1.9% ma- 

or structural differences, and 0% major unrealistic artefacts. From 

he results in this figure, we can also see that the simulated im- 

ges have a slightly higher occurrence of artefacts with respect to 

he real images. In particular, in the last column, we can see that 

0.5% of real images have at least one artefact against 49.6% for 

he synthetic images. 

In conclusion, the highlights from our survey are as follows: 
12 
• Simulated MRI scans contain minimal noise/texture artefacts 

and minor structural differences, approaching the levels of arte- 

facts contained in real MRI scans. 
• Simulated MRI scans are diagnostically indistinguishable from 

real MRI scans. 
• Simulated images and real MRI scans are not easy to discrim- 

inate (average performance is 59.3%). However, experienced 

neurologists and neuro-radiologists were able to achieve rea- 

sonably high performance on this task (average 76.4%). 

.5. Training and inference time 

Having a cluster of GPUs with the total number of GPUs being 

imilar to the number of slices in the MRI, allowed us to train each 

lice-based models in parallel. In our case, we have 50 NVIDIA GTX 

ITAN-X and 95 slices of MRI, and the total training time was ap- 

roximately 3 days. The inference was much faster, in fact, on the 

ame cluster, the computation time required to simulate the dis- 

ase progression for a single MRI (including the transfer learning 

tep) was in the order of a few minutes. 

.6. Model generalization 

The design of our system allows simulating MRI scans from a 

ew dataset without the need to retrain the system. However, for 

ecent generalization, the current implementation of our frame- 

ork requires the use of the same image modality (i.e., T1w-MRI) 

ith a similar image resolution (i.e. 1mm isotropic). According to 

ur framework design, the normalization step makes our model 

uite robust to change in scanner type or changes on the pre- 

rocessing pipeline whilst the personalization (transfer learning) 

tep ensures good generalization to new subjects. To demonstrate 

his point, we have considered a second dataset called OASIS- 

 ( LaMontagne et al., 2019 ) where we selected all the subjects di- 

gnosed as CN or AD, aged in the range between 60–85 and having 

t least one follow-up 3 years after the baseline scan. After exclud- 

ng all MRI scans where template registration and brain segmenta- 

ion failed, we were able to evaluate 166 new subjects from this 

ohort. The results on this new dataset are presented in Table 6 . 

Our results show that the model can generalize well to new 

ata, with only slightly reduced performance on average. Generally 

peaking, AI model generalization is known to be a challenge, par- 

icularly when the training set is not fully representative of the tar- 

et distribution. Indeed, reduced performance is expected here due 

o cohort differences, e.g., the distributions of age and follow-up 
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Fig. 9. Results on the participants’ visual perception obtained during our survey. The considered artefacts are divided into 2 different severity scores (minor and major) 

and 3 different categories (noise/texture, structural differences and unrealistic artefacts). The results for the simulated images are in orange, whereas the results for the real 

images are in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Results of our full pipeline on 2 different datasets. 

Training Testing Small regions Large regions 

cohort cohort Left Hippocampus Right Hippocampus Peripheral Grey Matter Ventricular CSF Tot. Grey Matter Tot. White Matter 

ADNI ADNI 0.029 ± 0.028 0.031 ± 0.031 0.771 ± 0.499 0.257 ± 0.222 0.829 ± 0.612 0.829 ± 0.612 

ADNI OASIS 0.030 ± 0.029 0.032 ± 0.031 1.037 ± 0.735 0.744 ± 0.509 1.458 ± 0.926 1.458 ± 0.926 

Fig. 10. Two cases of model generalization issues causing blurred simulated images and occurring when the test subject is not well represented in the training set. 
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uration, which differed between the ADNI and OASIS-3 datasets. 

e found that performance declined the most for large regions of 

he brain such as the cortical surface, which is well known to vary 

onsiderably between individuals, suggesting that personalization 

s the most challenging aspect of model generalization here. To 

emonstrate this, we show in Fig. 10 two cases where the model 

id not generalize well. A moderate drop in image quality is evi- 

ent in large regions of the obtained images. In particular, in both 

ases of Fig. 10 , the images are blurred due to low numbers of in-

ividuals in the training set aged in the range between 60–62. De- 

pite the performance reduction in such outlier cases, our model 

erformed quite well in most cases. 

Lastly, our data-driven framework offers further potential to 

uild generative models of other medical imaging modalities, e.g., 

au PET in Alzheimers disease. This would require some method- 

logical work such as modifying the biological constraints, used 
13 
ere to model neurodegeneration, to instead generate tau PET sig- 

al (for example). 

. Conclusion and future work 

The aim of our system is to produce a “digital twin” of the 

rain that can inform disease understanding and clinical decisions 

y predicting future evolution. Key clinical applications include: i) 

upport earlier diagnosis by predicting future brain appearance of 

 specific subject; and ii) a personalised, virtual placebo for clinical 

rials. More specifically, for the later application, our experiments 

alculated the accuracy of future predictions in untreated indi- 

iduals, which produces a practical baseline accuracy (with con- 

dence intervals) for our system to be used as a virtual placebo. 

ny treatment result would have to exceed the confidence inter- 

al of the virtual placebo to prove to be effective. The concept of 
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irtual placebos that we are proposing here can potentially revolu- 

ionise future clinical trials since this would avoid recruiting actual 

eal placebo and cutting down the total cost of the clinical trial. In 

onclusion, our long-term vision for 4D-DANI-Net is to have a fully 

utomatic system that can assess experimental treatments at the 

ndividual level, as well as suggesting the right dose to minimise 

ide effects ( Yoon et al., 2018 ). 

In summary, in this paper, we presented a deep learning frame- 

ork for brain image simulation in neurodegeneration, called 4D- 

ANI-Net, and demonstrated it in one of the biggest challenges of 

1st-century healthcare: ageing and Alzheimer’s disease. In partic- 

lar, our work addresses a key gap in AI-enabled healthcare: gener- 

tion of realistic and accurate synthetic medical images for model 

alidation. 

Current state-of-the-art MRI simulators suffer three key limita- 

ions – i) lack of individualization, ii) poor image resolution and iii) 

imited to 2D images – that have precluded full 4D simulation of 

ealistic and accurate high-resolution medical images, until now. 

We addressed these limitations by introducing three memory- 

fficient components in our system. Firstly, the proposed profile 

eight functions control system instability and although the pa- 

ameters obtained in this work are ad hoc for this specific task, 

e believe that our PWF strategy can be a valid solution in many 

omplex systems that suffer instability issues caused by optimiz- 

ng simultaneously multiple adversarial networks. Therefore, such 

ngineering novelty is important to ensure the stability of deep 

earning architectures with multiple networks, which are particu- 

arly complex in medical imaging, and therefore inherently unsta- 

le. Secondly, the 3D super-resolution block is used to overcome 

ow image resolution limitations. Thirdly, a new transfer learning 

trategy allowed us to personalise synthetic images for each indi- 

idual. 

We used quantitative and qualitative experiments to demon- 

trate the importance of each component of our pipeline and also 

ompared our full framework against baseline models. 

We see multiple exciting avenues for future work. Firstly, our 

ramework can handle more advanced models of neurodegenera- 

ive disease progression and ageing, e.g., by conditioning on other 

actors such as demographics, lifestyle, and phenotype/genotype 

nformation for personalised medicine. This idea may be extended 

o investigate and test hypotheses of neurodegenerative disease 

echanisms in a uniquely deep manner, which may help in the 

nsuccessful global effort s to develop effective treatments to date. 

inally, and most importantly, our modular system can generalise 

eyond MRI and brain diseases to other medical imaging modali- 

ies, diseases, and organs of the body. 
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